Individual event probabilities

For 203 data set $N_{bkg} = .35$ ie. It's calculated that $\sim .35$ background events will pass our tau selection cuts

Results of v_{τ} selection can be sated in two ways:

1. A signal of 4 events with an expected background of .35 events

The Poisson probability of all signal events being background

$$f(N: \mathbf{m}) = \frac{\mathbf{m}^N \cdot e^{-\mathbf{m}}}{N!} = \frac{.35^4 \cdot e^{-.35}}{4!} = 4.4 \times 10^{-4}$$

2. Using individual analysis, probabilities for each individual selected event are given

The probability that event <u>is</u> a V_{τ} and <u>is not</u> one of the background processes which make up N_{bkg} can be quantified : $P(\text{event}|V_{\tau})$

Since all events are independent, the probability that all events are background is

$$P_{all_bkg} = \prod_{i} (1 - P(i \mid \mathbf{n_t})) = 7 \times 10^{-5}$$

• Probability analysis can be used as selection criteria \rightarrow clean signal

Individual event probabilities: Bayesean

$$P(hypothesis_{\vec{a}} \mid \vec{e}) = \frac{A_{\vec{a}} \cdot PDF(\vec{e} \mid hypothesis_{\vec{a}})}{\sum A_{\vec{i}} \cdot PDF(\vec{e} \mid hypothesis_{\vec{a}})}$$

P = The probability of an event e being a result of hypothesis α .

 $\alpha = tau$, interaction or charm event

Two inputs for each hypothesis:

1. A_i prior probability:

Previous knowledge of the likelihood of each hypothesis

"Relative Normalization"

2. PDF (hypothesis_{α}| x) probability density at x under hypothesis

Definition: PDF(x) Δx = Probability of finding x in (x, $x+\Delta x$)

"Distribution of parameters which define event"

1-D example: V_{τ} vs interaction

Assume the only possibilities are V_{τ} or hadron interaction.

Use only one parameter Φ to evaluate event.

$$3024_30175$$
 has $\Phi = 1.04$

$$P(\mathbf{n_t} \mid \Phi) = \frac{A_{\mathbf{n}} \cdot PDF(\Phi \mid \mathbf{n_t})}{A_{\mathbf{n}} \cdot PDF(\Phi \mid \mathbf{n_t}) + A_{\text{int}} \cdot PDF(\Phi \mid \mathbf{n_t})}$$

Expect .16 interaction evts. A_{int} .16

Expect 4.2 V_{τ} events $A_{v\tau}$ 4.2

PDF(int. $| \Phi = 1.04) = .38$

 $PDF(V_{\tau} | \Phi = 1.04) = .06$

$$P(\mathbf{n_t} \mid \Phi = 1.1) = \frac{(4.2) \cdot (.06)}{(4.2) \cdot (.06) + (.16) \cdot (.38)} = .78$$

Prior Probabilities

• Prior probability of a hypothesis is proportional to the total number of this event type expected to pass the selection cuts. ie. N_{tau} , N_{charm} or $N_{interaction}$

Focus of this presentation is on

- 1. Expected number of v_{τ} interactions
- 2. Expected number interactions
- N_{tau} expected has large uncertainty due to uncertain values of :

total $\sigma(D_s)$: 30%

parameterization of D_s production: uncertainty in differential cross-section results in uncertainty in interaction rate of $\sim 20\%$

efficiency of selection, location of tau events

• N interaction background has uncertainty due to:

 λ_{steel} , $\lambda_{emulsio}$ and $\lambda_{plastic}$ for kink type hadron interactions

N_{tau} from ratio of rates v_{τ}/v_{e} or v_{τ}/v_{μ} from charm

$$N_{tau} = N_{\mathbf{n_m}} \cdot \frac{Rate_{\mathbf{n_t}}}{Rate_{\mathbf{n_m}}} \cdot \frac{E_{\mathbf{n_t}}}{E_{\mathbf{n_t}}} \qquad N_{tau} = N_{\mathbf{n_e}} \cdot \frac{Rate_{\mathbf{n_t}}}{Rate_{\mathbf{n_e}}} \cdot \frac{E_{\mathbf{n_t}}}{E_{\mathbf{n_t}}}$$

To reduce or eliminate uncertainties contributing to Ntau we can express expectation in terms of numu or nuee from similar sources (prompt)

- + Uncertainty in relative rate and relative efficiency are much smaller
- + Uses measured values of v_{μ} or v_{e} : less reliance on Monte Carlo
- Uses measured values of ν_{μ} or ν_{e} : uncertainty of measured number

Ratio of interaction rates

$$R_{\mathbf{n_t}} = \frac{\mathbf{s}(D^0)}{\mathbf{s}(pW)} \cdot \left\langle \frac{\mathbf{s}(D_s)}{\mathbf{s}(D^0)} \right\rangle \cdot Br(D_s \to \mathbf{n_t}) \cdot 2 \cdot \int \mathbf{h}(E) \mathbf{s}(E) \frac{dN}{dE} dE$$

$$R_{\mathbf{n_a}} = \sum_{i} \frac{\mathbf{s}(pW \to Charm_i)}{\mathbf{s}(pW)} \cdot Br(Charm \to \mathbf{n_a}) \cdot \int \mathbf{h}(E)\mathbf{s}(E) \frac{dN}{dE} dE_{\mathbf{a}}$$

 $\eta(E)$ is target acceptance fraction, $\sigma(E)$ is neutrino cross-section dN/dE is spectrum: neutrino energy depends on charm production distribution

$$\frac{d^2\mathbf{S}}{dx_f dpt^2} \propto (1 - xf)^n \cdot e^{-bpt^2}$$

$$\frac{R_{\mathbf{n}_{t}}}{R_{\mathbf{n}_{a}}} = \frac{\left\langle \frac{\mathbf{s}(D_{s})}{\mathbf{s}(D^{0})} \right\rangle \cdot Br(D_{s} \to \mathbf{nt}) \cdot \int \mathbf{h}(E)\mathbf{s}(E) \frac{dN}{dE}}{\sum_{i} \left\langle \frac{\mathbf{s}(C_{i})}{\mathbf{s}(D^{0})} \right\rangle \cdot Br(C_{i} \to \mathbf{n_{a}}) \cdot \int \mathbf{h}(E)\mathbf{s}(E) \frac{dN}{dE} dE_{\mathbf{a}}}$$

Cross-section ratio

Experiment		D_s/D^0	D+/D0
CLEO	e+e-	.32±.14	.38±.10
NA32	Pion	.24±.10	.51±.15
WA92	Pion	.16±.05	.42±.05
E653	Pion	-	.4±.1
E653	Proton	-	.8±.4
E691	Gamma	.14±.04	.51±.11
E769	Pion+	.28±.07	.44±.06
E769	Proton	.27±.18	.42±.05
E769	Pion-	-	.27±.06
E791	Proton	-	.57±.22
Mean		.18±.03	.41±.02

Charm production parameters

Experiment	b	n
E653	.84±.09	6.9 ±1.9
E743	.80±.2	8.6±2.0
Mean	.83 ±.11	7.7 ±.1.4

D_s branching fraction

$D_s v_{\tau}$	BR %	
CLEO	6.6 ± 1.1	
WA 75	5.6 ± 1.7	
BES	9.7 ± 3.8	
E653	6.6 ± 1.0	
L3	7.1 ± 1.9	
DELPHI	7.6 ± 1.1	
Mean	6.6 ± 0.6	

Charm branching fractions (PDG)

Decay	BR %
D+ ν _e	17.2 ± 1.9
D ⁰ ν _e	6.75 ± .29
$D_s \nu_e$	8 ± 5
D^+ ν_{μ}	16 ± 3
D^0 ν_{μ}	6.6 ± 0.8
D_{s} ν_{μ}	8 ± 5

Interaction rate ratio

- •10,000 trials with 10,000 v_{τ} each
- •Varying all inputs by uncertainty
- •Interaction probability weighted by cross-section of generated neutrino

One MC trial

- 1. Produce charm using selected ratios
- 2. Simulate neutrino production through charm decay
- 3. Find fraction of produced neutrinos passing through detector weighted by interaction cross-section.
- 4. Repeat 2-4 until 10,000 v_{τ} produced

Interaction background

Calculate # by material:

$$N_{interaction} = N_{Fe} + N_{base} + N_{emul}$$

$$N_{int} = L \lambda P_{11}$$

- λ mean free path for single charge interaction (kink type) which pass tau selection cuts: pt > 250 MeV & momentum> 1 GeV
- P_{ll} probability of no lepton being found = $F_{NC} + F_{\mu CC}^* (1-\epsilon_{\mu}) + F_{eCC}^* (1-\epsilon_{e})$ calculated from Monte Carlo
- L total path length of all primary particles: from data

L : Only from first segment to a total of 5mm from vertex

Path length in cm.

	ECC events	BULK events
Emulsion	28.0	105.5
Plastic	74.7	14.1
Fe	131.7	-

(203 data set)

Mean free path of interaction: CHARON experiment

CHARON measured pion interaction in emulsion stacks: 2, 3, and 5 GeV pions

pt > 250 MeV/c

λ of white star kinks WSK

 λ of gray star kinks GSK (low activity interaction \rightarrow ECC background)

Results for emulsion can be *scaled* for Fe and plastic:

composite material has mean free path

$$\mathbf{I}_{j}^{-1} = \mathbf{N}_{\mathbf{A}} \cdot \sum_{i} w_{i} \cdot \mathbf{S}_{i} \cdot \mathbf{A}_{i}^{-1}$$

cross-section has nuclear dependence of $\sigma \propto A^{\alpha}$, $\alpha = .71$

$$\frac{MFP_{J}}{MFP_{Emul}} = \frac{\boldsymbol{r}_{Emul} \cdot \sum_{i}^{Emul} w_{i} \cdot A_{i}^{1-a}}{\boldsymbol{r}_{J} \cdot \sum_{i}^{J} w_{i} \cdot A_{i}^{1-a}}$$

	2GeV/c	3GeV/c	5GeV/c	E872
WSK bulk	134 ± 90	47 ± 16	49± 18	60 ± 25
GSK bulk	14 ± 4	27 ±9	23 ± 13	20 ± 9
WSK scaled to Fe			29 ± 13	
GSK scaled to Fe			9.6 ± 4.3	
WSK scaled to lucite			117 ± 54	
GSK scaled to lucite			39 ± 18	

Mean free path of interaction: MC

1. Primary hadrons from a LEPTO simulation of neutrino interactions are propagated through an EC800 emulsion stack to simulate emulsion record.

Momentum is smeared by $\Delta p/p = 30\%$

Track segment recorded if particle traverses entire 100µ of emulsion

2. Kinks satisfying the tau selection cuts are chosen.

only "kink type" interactions & pt, momentum, max. angle cuts

3. $\lambda = \text{number of kinks seen/total path length simulated}$

Kink is counted *iff* 1 segment is visible in downstream side.

	Steel	Lucite
∫Path length	11.3 km	11.5 km
# kinks	1473	463
λ	7.7 m	24.8 m
$\begin{array}{cc} \lambda_{total} & CHARON \\ & (wsk + gsk) \end{array}$	7.2 m	30 m

Interaction background results

$$N_{int} = L \lambda^{-1} P_{11}$$

$$P_{ll} = F_{NC} + F_{\mu CC}^* (1-\epsilon_{\mu}) + F_{eCC}^* (1-\epsilon_{e})$$
 from Monte Carlo ~.48

BULK CHARON result for WSK only: $\lambda = 60 \pm 25$ m

ECC $\lambda_{plastic}$ for ECC 800 is lower limit for ECC200: low energy fragments which identify GSK are more likely to be recorded in emulsion in ECC200 $\lambda_{plastic}$ MC = 24.8m

 λ_{Fe} is identical for ECC800 and ECC200

$$\lambda_{Fe} MC = 7.7 \text{ m}$$

$$N_{\text{bulk}} = (1.33 \text{m}) (1/60 \text{m}) (.48) = .010$$
 $N_{\text{plastic}} = (.747 \text{m}) (1/24.8 \text{m}) (.48) = .014$
 $N_{\text{steel}} = (1.32 \text{m}) (1/7.7) (.48) = .082$
 $N_{\text{interaction}} = .106$